User's Manual **Electromagnetic Flow Meter** # CONTENTS | 1.SUMMARY1 | |---| | 2.WORKING PRINCIPLES1 | | 3.PRODUCT CLASSIFICATION2 | | 4.TECHNICAL SPECIFICATON3 | | 5.APPEARANCE AND INSTALLATION 4 | | CONVERTER OPERATION MENU AND PARAMETER SETUP6 | | 7.INSTALLATION14 | | 3.WIRING16 | | 9.SELF-DIAGNOSTICS AND TROUBLESHOOTING | | 10.PACKAGING······· 2 3 | | 11.TRANSPORTATION AND STORAGE | | 12.OPERATION | # 1. SUMMARY # 1.1 Features - Measurement is not affected by the variation of flow density, viscosity, temperature, pressure and conductivity. High accuracy measurement is guaranteed according to the linear measurement principle. - No obstacle in the pipe, no pressure-loss and lower requirement for straight pipeline. - DN 6 to DN2000 covers a wide range of pipe size. A variety of liners and electrodes are available to satisfy different flow characteristic. - Programmable low frequency square wave field excitation, improving measurement stability and reducing power consumption. - Implementing 16 bits MCU, providing high integration and accuracy; Fulldigital processing, high noise resistance and reliable measurement; Flow measurement range up to 1500:1. - High definition LCD display with backlight. - •RS485 or RS232 interface supports digital communication. - Intelligent empty pipe detection and electrodes resistance measurement diagnosing empty pipe and electrodes contamination accurately. - SMD component and surface mount technology (SMT) are implemented to improve the reliability. # 1.2 Main Applications WELTER electromagnetic flowmeter can be used to measure the volume flow of conductive fluid in a closed pipeline. It is widely applied in the flow measurement and control in the fields of chemical and petroleum industry, metallurgy industry, water and waste water, agriculture and irrigation, paper making, food and beverage industry and pharmaceutical industry. # 1.3 Ambient Conditions Ambient temperature: sensor: -25°C to +60°C; converter: -25°C to +60°C. Relative humidity: 5% to 90%: # 1.4 Working Conditions Maximum fluid temperature: Compact type: 60℃ 150°C Remote type: Teflon > Neoprene 80℃: 120℃ Polyurethane 70℃ Fluid conductivity: $\geq 5\mu$ S/cm # 2.WORKING PRINCIPLES # 2.1 Measuring Principles The measuring principle of electromagnetic flowmeter is based on the electromagnetic induction law of Farady. The sensor is mainly composed of measuring tube with isolate lining, a pair of electrodes installed by penetration of the measuring tube wall, a pair of coils and iron core to produce working magnetic field. When the conductive fluid flows through the measuring tube of the sensor, the voltage signal in direct proportion to the average flow velocity of the fluid will be inducted on the electrodes. The signal is amplified and treated by the transmitter to realize various display functions. FIG. 1: The electromagnetic flowmeter Working principle of the # 2.2 Converter Circuit Schematic The converters supplies a stable exciting current to the coil in the sensor of electronetic flowmeters to get B constant and amplifies the electromotive force and convert it into standard signals of current or frequency so that the signals can be used for displaying, controlling and processing. The schematic of converter circuit is shown in Fig. 2. Fig. 2 Schematic of converter circuit # 3.PRODUCT CLASSIFICATION # 3.1 Product components Electromagnetic flowmeter is composed of sensor and converter. The remote-type also needs a special double-layer shielded cable to connect the converter and the sensor. # 3.2 Product models WELTER electromagnetic flowmeter has two forms: compact-type and remote-type. There are seven kinds of electrode materials and four kinds of lining Materials available for sensor. Materials available for sensor. #### 4. TECHNICAL SPECIFICATION # 4.1 The flowmeter is compliant to Standard "JB/T 9248-1999 Electromagnetic Flow Meter". # 4.2 Maximum flow speed: 15m/s **4.3 DN size:** 3, 6, 10, 15, 20, 25, 32, 40, 50, 65, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000 4.4 Accuracy: 0.5%, 0.2% 4.5 Nominal Pressure: 4.0MPa(DN0-150) 1.6MPa(DN200-600) 1.0MPa(DN700-1200) 0.6MPa(DN400-2000) Or other specified by order # 4.6 Materials Electrode Forms and Materials: Electrode design has four forms: standard form, scraper form, detachable form and grounding electrode. Electrode material is selectable from stainless steel containing Mo, stainless steel coated with carbonized tungsten, Hastelloy B, Hastelloy C, Titanium, Tantalum and platinum-iridium alloy. Flange material: carbon steel Grounding ring: stainless steel Inlet protection ring: carbon steel, stainless steel # 4.7 Enclosure lp65: IP68: only available for remote-type sensor with neoprene or polyurethane liner, not including flameproof model. # 4.8 Flameproof Standard DN15-DN600 compact-type: md II Bt4 DN15-DN1600 remote-type: sensor and converter both installed in dangerous area: md II BT4. DN15-DN1600 remote-type: sensor installed in dangerous area and converter installed in safe area: md II BT4 # 4.9 Connection Cable Special cable is needed to connect the sensor and the converter for remotetype flowmeter. The cable length should not exceed 100 meters. A 10–meter cable is supplied free of charge and the rest is to be ordered. # 4.10 General Specification of Converter - Power supply:AC 85–265V, 45–63Hz, ≤20W; DC 11–40V - Converter display and operation: four keys are available to set all parameters. External handheld or PC can be used to do the configuration. High resolution LCD display with backlight, empty pipe detection and self-diagnostic function are equipped in the converter. - Digital communication: RS485, RS232, MODBUS, REMOTE - Output Signals: - Current output: fully-isolated, 4-20mA/0-10mA load resistance: 0-10mA: $0-1.5\text{K}\Omega$; 4-20mA: $0-750\Omega$. - -Frequency output: bidirectional flow output. Frequency output is proportional to the flow percentage of the full range. The converter provides fully isolated transistor open collector frequency output ranged from 1 to 5000 Hz. The external DC power supply should not exceed 35V and maximum collector current is 250mA. - Pulse output: bidirectional flow output. The converter can output up to 5000cp/s pulse series, which is dedicated to external totalization. Pulse factor is defined as volume or mass per pulse. It can be set to 0.001L/p, 0.01L/p, 0.1L/p, 1L/p, 2L/p, 5L/p, 10L/p, 100L/p, 1m3/p, 10 m3/p, 100 m3/p or 1000 m3/p. Pulse width is selectable from auto, 10ms, 20ms, 50ms, 100ms, 150ms, 200ms, 250ms, 300ms, 350ms and 400ms. Photo–coupler isolated transistor open collector circuit is used for pulse output. The external DC power supply should not exceed 35V and maximum collector current is 250mA. - Flow direction indication: The converter is capable of measuring both forward and reverse flow and recognizing its direction. The converter outputs 0V low level for forward flow, while +12V high level for reverse flow. - Alarm output: Two channels of photo-coupler isolated open collector circuit are used for alarm signal output. There are two alarm outputs: high limit alarm and low limit alarm. The external DC power supply should not exceed 35V and maximum collector current is 250mA. - Damping constant: Damping time is selectable from 0.2 to 100s. # **5.APPEARANCE AND INSTALLATION** Dimensions of Converter, shown as Fig 3. Fig3(a) Remote-type converter Fig3(b) Compact-type converter # Dimensions of sensor, shown as Fig 4. # Dimensions and weight Flange dimensions (standard; GB/T9119) | Nominal | 100 | w | н | Hetertoth | e weight (g | Nomnai
diameter | | pres | sure 1 | .6MP | а. | | pres | sure 4 | .OMP | В | |----------------|-----|-----|-----|-----------|-------------|--------------------|-----|------|--------|------|----|-----|------|--------|------|----| | diameter
DN | L | VV | н | Ashape | sensor | DN | D | d, | d. | n | ь | D | d, | do | n | b | | 15 | 200 | 140 | 147 | 10 | 7 | 15 | 95 | 65 | 14 | 4 | 16 | 95 | 65 | 14 | 4 | 16 | | 20 | 200 | 140 | 154 | 12 | 9 | 20 | 105 | 75 | 14 | 4 | 18 | 105 | 75 | 14 | 4 | 18 | | 25 | 200 | 140 | 156 | 14 | 11 | 25 | 115 | 85 | 14 | 4 | 18 | 115 | 85 | 14 | 4 | 18 | | 32 | 200 | 168 | 166 | 15 | 12 | 32 | 140 | 100 | 18 | 4 | 18 | 140 | 100 | 18 | 4 | 18 | | 40 | 200 | 176 | 172 | 16 | 13 | 40 | 150 | 110 | 18 | 4 | 20 | 150 | 110 | 18 | 4 | 20 | | 50 | 200 | 176 | 191 | 17 | 14 | 50 | 165 | 125 | 18 | 4 | 20 | 165 | 125 | 18 | 4 | 20 | | 65 | 250 | 214 | 200 | 25 | 22 | 65 | 185 | 145 | 18 | 4 | 20 | 185 | 145 | 18 | 8 | 22 | | 80 | 250 | 214 | 218 | 29 | 26 | 80 | 200 | 160 | 18 | 8 | 22 | 200 | 160 | 18 | 8 | 22 | | 100 | 250 | 230 | 242 | 31 | 28 | 100 | 220 | 180 | 18 | 8 | 22 | 235 | 190 | 22 | 8 | 26 | | 125 | 250 | 281 | 277 | 36 | 33 | 125 | 250 | 210 | 18 | 8 | 22 | 270 | 220 | 26 | 8 | 26 | | 150 | 300 | 281 | 302 | 41 | 38 | 150 | 285 | 240 | 22 | 8 | 24 | 300 | 250 | 26 | 8 | 28 | DN15-DN150, 1.6, 4.0 MpaSensors and a body shape DN200-DN600 # Dimensions and weight Flange dimensions (standard: GB/T9119) | н | Refer to | Nominal | | pres | sure1 | 6MPa | | | pres | sure4. | 0MPa | | |-----|-------------------|---------|-----|------|----------------|------|----|-----|------|----------------|------|---| | Φ- | the weight
kig | dameter | D | d, | d _o | n | ь | D | d, | d _o | n | ı | | 362 | 45 | 200 | 340 | 295 | 22 | 12 | 26 | 340 | 95 | 22 | 8 | 2 | | 412 | 50 | 250 | 405 | 355 | 26 | 12 | 28 | 395 | 350 | 22 | 12 | 2 | | 472 | 60 | 300 | 460 | 410 | 26 | 12 | 32 | 445 | 400 | 22 | 12 | 2 | | 522 | 145 | 350 | 520 | 470 | 26 | 16 | 35 | 505 | 460 | 22 | 16 | 3 | | 572 | 180 | 400 | 580 | 525 | 26 | 16 | 38 | 565 | 515 | 26 | 16 | 3 | | 626 | 215 | 450 | 640 | 585 | 30 | 20 | 42 | 615 | 565 | 26 | 20 | 3 | | 676 | 245 | 500 | 715 | 650 | 30 | 20 | 46 | 670 | 620 | 26 | 20 | 4 | | 776 | 335 | 600 | 840 | 770 | 36 | 20 | 52 | 780 | 725 | 30 | 20 | 4 | DN200~DN600, 1.0, 1.6Mpa | ions and weight | Flange dimensions | (standard: | GB/T911 | |-----------------|-------------------|------------|---------| | | | | | | minal
meter
ON | L | Η
Φ- | Refer to
the weight
kg | Nominal
diameter
DN | pressure
MPA | D | d, | d _o | n | ь | |----------------------|----------|------------|------------------------------|---------------------------|-----------------|------|------|----------------|----|----| | 00 | 700 | 866 | 435 | 700 | | 895 | 840 | 30 | 24 | 30 | | 0000 | 2000 | 100000 | | 800 | 1 | 1015 | 950 | 33 | 24 | 32 | | 00 | 800 | 966 | 545 | 900 | 1.0 | 1115 | 1050 | 33 | 28 | 34 | | 00 | 900 | 1076 | 655 | 1000 | 1 1 | 1230 | 1160 | 36 | 28 | 34 | | 000 | 1000 | 1200 | 810 | 700 | | 860 | 810 | 26 | 24 | 26 | | ,00 | 1000 | 1200 | 010 | 800 | 0.6 | 975 | 920 | 30 | 24 | 26 | | 200 | 1200 | 1406 | 875 | 900 | | 1075 | 1020 | 30 | 24 | 26 | | 100 | 1400 | 1632 | 1235 | 1000 | | 1175 | 1120 | 30 | 28 | 26 | | | 20000000 | 155-200055 | | 1200 | 1 1 | 1405 | 1340 | 33 | 32 | 28 | | 600 | 1600 | 1832 | 1555 | 1400 | 1 | 1630 | 1560 | 36 | 36 | 32 | | 300 | 1800 | 2036 | 2085 | 1600 | 0.6 | 1830 | 1760 | 36 | 40 | 34 | | _ | | | | 1800 | | 2045 | 1970 | 39 | 44 | 36 | | 000 | 2000 | 2236 | 2610 | 2000 | | 2265 | 2180 | 42 | 48 | 38 | DN700~DN2000, 1.0, 1.6Mpa # Remark: - 1.Nominal Pressure 4.0 MPa for DN10-150; Nominal Pressure 1.6 MPa for DN10-1000; Nominal Pressure 1.0 MPa for DN10-1600; Nominal Pressure 0.6 MPa for DN10-2000. Other special pressure level can be designed on demand. - 2.The length L increases 6 mm if ground flange is equipped; The length L increases 6 mm if inlet protection flange is equipped; The length L increases 6 mm if liner protection flange is equipped. # 6.CONVERTER OPERATION MENU AND PARAMETER SETTING # 6.1 Keypad and Display Fig.5(a) Remote-type key and display Fig.5(b) Compact-type key and display # 6.2 Keypad Function 1. Automatic Measurement Mode DOWN: Scroll bottom line display; UP: Scroll top line display; ALT + ENTER: Enter into setting mode; ENTER: Return to measurement mode. 2. Parameter Setting Mode DOWN: Subtract one form the digit at the cursor; UP: Add one on the digit at the cursor ALT + DOWN: Cursor shifts left ALT + UP: Cursor shifts right ENTER: Enter/exit submenu; ENTER: Return to measurement mode if held for 2 seconds at any location Remarks: (1) When using ALT key, hold ALT first and then press UP or DOWN. - (2) Under setting mode, the meter returns to measurement mode automatically if no key is pressed for 3 minutes. - (3) When adjusting flow zero, UP or DOWN key can be used to change the sign (+/-). - (4) When setting flow range, UP or DOWN key can be used to change flow unit # 6.3 Parameter Configuration and Operation Password The setting parameters determine the operation status, calculation method and output mode of the flow meter. Properly setting meter parameter can make the meter work in best condition and higher accuracy of display and output can be obtained. There are five levels of password, where level 0 – 3 are open for user and level 4 reserved for manufacturer. Level 1 to 2 passwords are changeable by higher level password-holder, e.g. Level-3 password. Meter setting can be browsed by entering any level of password. However, higher level password is needed to change settings. - ◆Password Level-0 (default value 0521): fixed and browsing only; - ◆ Password Level-1 (default value 7206): changeable and authorized to modify menu item 1 to 25; - ◆ Password Level-2 (default value 3110): changeable and authorized to modify menu item 1 to 29: - ◆ Password Level-3 (default value 2901): fixed and authorized to modify menu item 1 to 38; - ◆ Password Level-4 (reserved):fixed and authorized to modify any menu item including resetting system. Totalizer Reset Password (default value 36666): changeable in menu item 'CIr Tot. Key' and authorized to clear the three internal counter. It is suggested that Level-3 password be held by manager or supervisor while Level-0 to 2 passwords be kept by operator. The Level-3 password can also be used to change the password for totalizer resetting. # 6.4 Table of Parameter Setting Menu The converter setting menu consists of 45 items. Many of them are set up by manufacturer before shipping. It is not necessary to change them when applying. There are only a few of them to be set by user according to the application. The menu items are listed in the table below: | tem No. | Menu Display | Setting Method | Password
Level | Value Range | |---------|--------------|----------------|-------------------|----------------------------| | 1 | Language | Option | 1 | English | | 2 | Sensor Size | Option | 1 | 3 – 3000mm | | 3 | Flow Range | Modify | 1 | 0 - 99999 | | 4 | Auto Rng Chg | Option | 1 | ON/OFF | | 5 | Damping | Option | 1 | 0 – 100 s | | 6 | Flow Dir. | Option | 1 | Fwd/ Res | | 7 | Flow Zero | Modify | 1 | +/-0.000 | | 8 | L.F. Cutoff | Modify | 1 | 0 - 99% | | 9 | Cutoff Enble | Option | 1 | ON/OFF | | 10 | Rate-Of-Chng | Modify | 1 | 0 - 30% | | 11 | Limit Time | Modify | 1 | 0 – 20 s | | 12 | Total Unit | Option | 1 | 0.0001L - 1 m3 | | 13 | Flow Density | Modify | 1 | 0.0000 - 3.9999 | | 14 | Current Type | Option | 1 | 4-20mA/0-10mA | | 15 | Pulse Output | Option | 1 | Frq/ Pulse | | 16 | Pulse Factor | Option | 1 | 0.001L - 1 m3 | | 17 | Freq Max | Modify | 1 | 1 – 5999 Hz | | 18 | Comm Address | Modify | 1 | 0 – 99 | | 19 | Baudrate | Option | 1 | 600 – 14400 | | 20 | EmpPipe Det. | Option | 1 | ON/OFF | | 21 | EmpPipe Alm | Modify | 1 | 200.0 ΚΩ | | 22 | Hi ALM Enble | Option | 1 | ON/OFF | | 23 | Hi Alm Limit | Modify | 1 | 000.0 - 199.9% | | 24 | Lo Alm Enble | Option | 1 | ON/OFF | | 25 | Lo Alm Limit | Modify | 1 | 000.0 - 199.9% | | 26 | RevMeas.Enbl | Option | 1 | ON/OFF | | 27 | Sensor S/N | Modify | 2 | 00000000000-999999999999 | | 28 | Sensor Fact. | Modify | 2 | 0.0000 - 3.9999 | | 29 | Field Mode | Option | 2 | Mode 1,2,3 | | 30 | Multiplying | Modify | 2 | 0.0000 - 3.9999 | | 31 | F. Total Set | Modify | 3 | 000000000 - 999999999 | | 32 | R.Total Set | Modify | 3 | 000000000 - 9999999999 | | 33 | Input Contrl | Option | 3 | Disable/Stop Tot/Reset Tot | | 34 | Clr Totalizr | Password | 3 | 00000 - 59999 | | 35 | CIr Tot. Key | Modify | 3 | 00000 - 59999 | |----|--------------|----------|---|-----------------------| | 36 | Date-y/m/d * | Modify | 3 | 99/12/31 | | 37 | Time-h/m/s * | Modify | 3 | 23/59/59 | | 38 | Password L1 | Modify | 3 | 0000 - 9999 | | 39 | Password L2 | Modify | 3 | 0000 - 9999 | | 40 | Password L3 | Modify | 3 | 0000 – 9999 | | 41 | Current Zero | Modify | 4 | 0.0000 - 1.9999 | | 42 | Current Max | Modify | 4 | 0.0000 - 3.9999 | | 43 | Meter Factor | Modify | 4 | 0.0000 - 3.9999 | | 44 | Convtr S/N | Modify | 4 | 0000000000-9999999999 | | 45 | Sys Reset | Password | 4 | | ^{*} Item No. 36 and 37 are optional and only effective for the converter with real clock and power failure recording function. # 6.5 Parameter Setting Explaination # 6.5.1 Sensor Size The converter supports sensor diameter ranging from 3 to 3000mm, which can be chosen by pressing UP or DOWN key. # 6.5.2 Flow Range Flow range refers to the upper range value (URV) of flow rate. The URV is relative to flow percentage and output signal. At the analog output the amount of the measured values in the range 0 up to URV is displayed linear to the current range 4 to 20mA, at the frequency output to the frequency range 0 to the end frequency. The low flow cutoff and flow limit alarm relates to flow range as well. The maximum measurable flow rate, however, is not limited to the flow range as long as the flow speed does not exceed 15m/s. In this menu item, user can also choose unit of flow rate. For volume flow, L/s, L/min, L/h, m3/s, m3/min and m3/h are available; while for mass flow, kg/s、kg/m、kg/h、t/s、t/m、t/h can be selected from. It is up to the habits and application requirements to pickup a proper unit. # 6.5.3 Auto Rng Chg The converter has a function called Auto-Range-Change that is usually used for control system with wide flow range variation. The primary flow range is the value given by menu item 'Flow Range'. The second flow range (lower range) is obtained by selecting range ratio 1:2, 1:4 or 1:8 of primary one. Fig 6 illustrates how the flow range is changed automatically. To safely change range and avoid vibration of display and output, a 5% to 10% hysteresis is added at the change point. # 6.5.4 Damping Long damping constant can improve the stability of display and output and is Fig. 6 Illustration of Auto-Range-Change Suitable to flow control application; while short damping constant has short Response time and is suitable to the totalization of pulse flow. Damping time is selectable from 0.2s to 100s. # 6.5.5 Flow Dir. If the displayed direction sign is not agreed to the actual flow direction, change this item to the opposite option. # 6.5.6 Flow Zero To conduct zero adjustment, the fluid in the sensor pipe must be held still. The flow zero is displayed by flow speed and the unit is m/s. The display of flow zero is shown below: On the LCD, the top line displays the measured zero point while the bottom line shows the adjustment value. If the FS is not equal to 00.000m/s, adjust the sign and value on bottom line until FS back to nil. Remind again: to adjust the flow zero, the sensor pipe must be filled and the fluid must be kept still. The flow zero adjustment value is an important constant of the meter and should be printed on the calibration sheet and label. The value should include the sign and amount by unit of m/s. #### 6.5.7 L.F. Cutoff and Cutoff Enble Low flow cutoff is set in percentage relative to flow range. If Cutoff is enabled and flow is lower than the set value, the display of flow rate, speed and percentage and signal outputs are forced to nil. If the item is disabled, no action is taken. # 6.5.8 Rate-Of-Chng and Limit Time 'Rate-of-change' limit technique is used to eliminate application-related high electrical noise contained in the process flow signal. To check electrical noise, two parameters are defined: 'Rate-of-change' limit and 'Control limit time'. If the sampled flow value exceeds the set rate-of-change limit value based on the averaged flow rate value up until the sampled time, the system will reject that sampled value and instead the averaged value including the rate-of-change limit value in place of the rejected sampled value will be output. However, if the limit-exceeding sampled value continues for the same flow direction for more than the preset control limit time, that data will be used as output signal. Fig 7 illustrates the effect of noise-suppressing by rate-of-change limit. The value of rate-of-change limit can be set from 0 to 30% of flow range and limit time ranges from 0 to 20 seconds. If either of the two parameters is set to nil, the function is disabled. The rate-of-change limit function is not suitable for short period measurement and flow meter calibration. # Unattenuated measuring variable Rate-of-change limit t= Control limit time time Fig.7 Example for the effect of rate-of-change limit # 6.5.9 Total Unit The converter has three 10-digit counters and the maximum counts are 999999999. The total flow unit can be L, m3, kg or t (metric ton) with a multiplying factor of 0.001, 0.01, 0.1, 1, 10, 100 or 1000. # 6.5.10 Flow Density The converter is capable of measuring mass flow if fluid density is set. The density can be set from 0.0001 to 3.9999 and the mass unit is determined automatically by flow unit. The density should be set to 1.0000 (default value) if not used. Otherwise, measurement data will be forced to nil. # 6.5.11 Current Type Current output type is selectable from 4-20mA to 0-10mA. # 6.5.12 Pulse Output Two types of pulse output are available to choose from: frequency output mode And pulse output mode. The meter outputs continuous square wave pulse under frequency mode, while pulse series under pulse mode. Frequency output is usually used for flow rate measurement and short period of time totalization. Pulse output can be connected to an external counter directly and is often used for long period of time totalization. As mentioned hereinbefore, transistor open collector circuit is used for frequency and pulse output. Therefore, the external DC power supply and load are necessary. Pulse Factor 6.5.13 Pulse factor is defined as: volume or mass per pulse. It can be set to 0.001L/p, 0.01L/p, 0.1L/p, 1L/p, 2L/p, 5L/p, 10L/p, 100L/p, 1m3/p, 10 m3/p, 100 m3/p or 1000 m3/p. Pulse width is selectable from auto, 10ms, 20ms, 50ms, 100ms, 150ms, 200ms, 250ms, 300ms, 350ms and 400ms. # 6.5.14 Freq Max Frequency range corresponds to the upper range value of flow rate, or 100% of flow percentage in other word. Maximum frequency is selectable from 1 to 5999Hz. # 6.5.15 Comm Address and Baudrate Substation address is needed when using RS485 communication. The address can be set from 01 to 99. Baud rate is the transmission speed between main and sub station. It is selectable from 600, 1200, 2400, 4800, 9600, 14400bps. Remind: the baud rate must be the same as that of the main computer. # 6.5.16 EmpPipe Det. This item is used to enable or disable the empty-pipe detector. If enabled, the meter will force the display value, analog output and digital output to nil when the sensor pipe is not full. # 6.5.17 EmpPipe Alm. This item is to set the electrode alarm trip value. Constant current source method is employed to measure the resistance between two electrodes. The Variation of the resistance is checked by CPU and CPU recognizes if the pipe is empty or the electrodes are contaminated. The resistance is calculated as following: $$R \approx \frac{1}{d} \sigma$$ Where, d= electrode radius #### $\sigma = Fluid conductivity$ The electrodes resistance is usually between 5 to $50k\Omega_{\circ}$ The variation of the resistance relates to the surface status of electrodes and variation of fluid characteristic. If the sensor is filled with fluid, abnormal resistance signal is detected and empty pipe alarm is output. The electrode alarm trip value is determined based on the first-time measured electrode resistance. After the installation of the flowmeter, measure the resistance between the electrodes when the sensor pipe is filled. Record the resistance value and take it as a basis. Usually, set the trip value as 3 times of the original resistance recorded. #### 6.5.18 Hi ALM Enble User can enable or disable the high limit alarm. # 6.5.19 Hi Alm Limit High alarm limit value is set in percentage of the upper range of flow rate. The parameter ranges from 0% to 199.9%. The meter outputs alarm signal when the flow percentage is higher than this value. #### 6.5.20 Lo Alm Enble User can enable or disable the low limit alarm. #### 6.5.21 Lo Alm Limit Low alarm limit value is set in percentage of the upper range of flow rate. The parameter ranges from 0% to 199.9%. The meter outputs alarm signal when the flow percentage is lower than this value. # 6.5.22 Sensor S/N Sensor serial number records the information of the sensor equipped with the converter and ensure them match up when installing. # 6.5.23 Sensor Fact. The sensor factor is set according to the calibration sheet supplied by the manufacturer. Usually this factor has been set up by the manufacturer before shipping. It is an important value that determines the accuracy of measurement. Do not change it without calibration. # 6.5.24 Field Mode The converter offers three field exciting modes based on the exciting frequency. Mode 1 is the most-commonly used one and suitable for most cases. Mode 2 and 3 are low-frequency exciting modes and are better for large size meter to measure water. The calibration should be taken under the same exciting mode as that used for measurement. # 6.5.25 RevMeas.Enbl: Reverse Measurement Enable If RevMeas.Enbl is set to ON, the converter displays flow and outputs signals when flow direction is reversed. If OFF, the converter displays no flow and does not output signals when reversing. # 6.5.26 Multiplying This item is a multiplying factor selectable from 0.0000 to 3.9999. When calculating the flow rate and total, this factor is taken into account. It is often used to measure the flow in the open channel. If not applied, set the value to 1.0000. # 6.5.27 F. Total Set and R. Total Set Presetting of forward and reverse total counter is designed to start counting from the existing reading when replacing a converter or flowmeter. It provides a continuous total flow read which is convenient for management. # 6.5.28 Input Control This menu item is set to select the function of contact input. There are three options to be chosen from: 'input disabled', 'stop totalizer' and 'reset totalizer'. The converter disables the contact input if 'input disabled' is selected. The contact input is used to start/stop totalizer controlled by ON/OFF switch signal if 'stop totalizer' function is active. If 'reset totalizer' function is enabled, ON (close) contact signal will clear the three internal total flow counters. 6.5.29 CIr Totalizr Enter the 'Totalizer Reset Password' in this menu item and press ENTER to confirm. The converter clears the three internal counter and restart counting if password matched. # 6.5.30 CIr Tot. Key The 'Totalizer Reset Password' is changeable in this menu item if Level-3 password is entered. Remind: keep the new password in a safe place. # 6.5.31 Date -y/m/d and Time-h/m/s These items are used to change the internal real time clock if equipped. # 6.5.32 Password L1, Password L2 and Password L3 To change the Level-1 to Level-3 passwords, use Level-4 or higher level password to enter and change these two items. # 6.5.33 Current Zero and Current Max Adjust the current output zero point and upper range value. It is not suggested that user make any adjustment since it has been setup to the best condition by the manufacturer. # 6.5.34 Meter Factor This factor is used by the manufacturer to normalize the excitation current and amplifier signal of the converter. DO NOT change it. # 6.5.35 Convtr S/N This serial number records the manufacturing date and code of converter. DO NOT change it. # 6.5.36 Sys Reset This item is reserved for the manufacturer to re–initialize the converter. After system resetting, all settings are set to default values automatically. # 7.INSTALLATION The installation of flowmeter is shown as Fig. 8. # The correct installation flowmeter # 8.WIRING 8.1 GROUDING Fig. 9 Grounding of Flowmeter and Pipe # 8.2 Converter Terminals and Definition Terminal blocks and marks are shown in Fig. 10 and Fig. 11 Fig. 10 Remote Type: Terminals and Marks The definition of terminals and their marks for remote type converter is given as below: | DS1 | Shield drive 1 | |---------|----------------------------| | SIG1 | Signal input 1 | | SIG GND | Signal Ground | | SIG2 | Signal input 2 | | DS2 | Shield drive 2 | | EXT+ | Coil excitation + | | EXT- | Coil excitation - | | IOUT | Current output + | | ІСОМ | Current output - | | PUL+ | Frequency/pulse output + | | PCOM | Frequency/pulse output - | | PDIR | Flow direction indicator + | | ALM- | Low alarm output + | | ALM+ | High alarm output + | | ALCOM | Alarm output – | | Α | RS485 communication A | | В | RS485 communication B | | IN+ | Input contact + | | IN- | Input contact - | | L1(+) | 220V(24V +) input | | L2(-) | 220V(24V -) input | The dip switch SW1 is set to ON to supply +12V power to pulse output. If external power is used, turn the switch to OFF. Fig. 11 Compact Type: Terminals and Marks The definition of terminals and their marks for compact type converter is given as below: | T - | RS485-B | | | | | |-------|--------------------------------------|--|--|--|--| | T+ | RS485-A | | | | | | сом | Alarm/flow direction/ pulse output - | | | | | | FDIR | Flow direction indicator + | | | | | | AL | Low alarm output + | | | | | | АН | High alarm output + | | | | | | IN- | Input contact – | | | | | | IN+ | Input contact + | | | | | | P+ | Frequency/pulse output + | | | | | | сом | Current/pulse output – | | | | | | I+ | Current output + | | | | | | L1(+) | 220V(24V +) input | | | | | | L2(-) | 220V(24V -) input | | | | | # 8.3 Remote-type Wiring 8.3.1 Terminal Block in Sensor Fig. 11 Marks of Terminal Block SIG1: Signal 1 (Connecting to white coax wire of STT3200 cable) SIG2: Signal 2 (Connecting to black coax wire of STT3200 cable) DS1: Signal 1 shield drive (Connecting to inner shield layer of white coax wire of STT3200 cable) DS2: Signal 2 shield drive (Connecting to inner shield layer of black coax wire of STT3200 cable) SIG GND: Signal ground (Connecting to Ex-shield of STT3200 cable) EXT+: Coil 1 (Connecting to red cable) EXT-: Coil 2 (Connecting to yellow cable) 8.3.2 Connection of STT3200 Cable Fig. 12 Schematic Diag for STT3200 Cable Preparation Schematic Diag for Cable Preparation # 8.4 Output Signal Wiring The dip switch SW1 is set to ON to supply +12V power to pulse output. A 1K Ω resister is connected to the +12V power to provide a pull–up. If external power is used, turn the switch to OFF. Fig. 13(a) Wiring of current output Fig. 13 (b) Example of electromagnetic counter connection Fig. 13(c) Example of electrical counter connection Fig. 13(d) Digital Output Direct Connection Fig. 13(e) Connection with photo-coupler (e.g. PLC) Fig.13 (f) Connection with relay (e.g. PLC) Generally, the intermediate relay needs 12V or 24V power supply E. D is a surge-absorbing diode, which is usually embedded in the relay. If not, an external one is necessary. # 9. Self-diagnostic and Troubleshooting The converter is made by surface mount technology and is not repairable for user. Do not open the converter case. The self-diagnosis function of the converter is capable of displaying alarm information except power supply or hardware failures. A '!' symbol is displayed on the right corner of LCD top-line and malfunction information can be read from the bottom-line by pressing DOWN key. User may check the flowmeter according to the alarm information. Some examples of alarms are given below: Coil Alm Elctrd Alm EpPipe Alm Low Alarm High Alarm Troubleshooting information is given below: # 9.1 No display Check the connection of power supply; Check fuse: Check the voltage of power supply; Check if the LCD contrast can be adjusted. Adjust it if possible; Return to base, if a) to d) are OK. # 9.2 Coil Alarm - a) Check if terminal EXT+ and EXT- are open; - b) Check if coil resistance is less than 150 Ω; - c) Replace converter if a) and b) are OK. # 9.3 Empty Pipe Alarm and Electrodes Alarm - a) Check if the sensor pipe is filled with fluid; - b) Check the connection of signal wiring; - c) Connect the terminal SIG1, SIG2 and SIG GND. If the alarm display disappears, it is confirmed the converter is normal. The alarm may be caused by the bubble in the fluid: - D) For electrodes alarm, measure the resistance between two electrodes with a multimeter. The read should be between 3 to $50k\Omega$. Otherwise, the electrodes are contaminated or covered. # 9.4 High Alarm Increase the flow range. # 9.5 Low Alarm Reduce the flow range. #### 9.6 Inaccurate Measurement - a) Check if the sensor pipe is filled with the fluid to be measured. - b) Check the wiring; - c) Check if the sensor factor and flow zero are the same as those on the calibration sheet. # 10.PACKAGING The package includes: The electromagnetic flowmeter ordered; Instruction Manual: # 11.TRANSPORTATION AND STORAGE To prevent the flowmeter from damage in the transportation, the package should be kept in unopened status before reaching installation site. The storage room should be satisfied with the following conditions: - a.Rain-proof, humidity-proof; - b. Strong Vibration and Shake Avoidance - c.Temperature between −20 to +60°C, relative humidity less than 80% # 12.OPERATION Before operation, the following inspection should be done to check if: - a. There is any damage caused by transportation or installation; - b. The power used is same as the label on the flowmeter; - c. The wiring is correct. After inspection, turn the valve on to fill the pipe up and make sure there is no leakage and the gas inside the pipe is eliminated. Switch on the power supply and the flowmeter is ready to use after 10 minutes warm-up. If there is any problem, please refer to the Section 9 for troubleshooting. If still not working properly, contact the manufacturer immediately.